Answer Key Chapter 7 – Algebra and Trigonometry 2e | OpenStax

7.1 Angles

  1. Graph of a 240-degree angle with a counterclockwise rotation.
    Figure 1 Graph of a 240-degree angle with a counterclockwise rotation.
  2. \frac{3\pi}{2}
  3. -135^{\circ}
  4. \frac{7\pi}{10}
  5. \alpha=150^{\circ}
  6. \beta=60^{\circ}
  7. \frac{7\pi}{6}
  8. \frac{215\pi}{18} = 37.525 \text{ units}
  9. 1.88
  10. \frac{3\pi}{2} \text{ rad/s}
  11. 1655 kilometers per hour

7.2 Right Triangle Trigonometry

  1. \frac{7}{25}
  2. \sin t = \frac{33}{65}, \cos t = \frac{56}{65}, \tan t = \frac{33}{56}, \sec t = \frac{65}{56}, \csc t = \frac{65}{33}, \cot t = \frac{56}{33}
  3. \sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}, \cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}, \tan(\frac{\pi}{4}) = 1, \sec(\frac{\pi}{4}) = \sqrt{2}, \csc(\frac{\pi}{4}) = \sqrt{2}, \cot(\frac{\pi}{4}) = 1
  4. 2
  5. \text{adjacent}=10; \text{opposite}=10\sqrt{3}; missing angle is \frac{\pi}{6}
  6. About 52 ft

7.3 Unit Circle

  1. \cos(t)= -\frac{\sqrt{2}}{2}, \sin(t)= \frac{\sqrt{2}}{2}
  2. \cos(\pi)= -1, \sin(\pi)= 0
  3. \sin(t)= -\frac{7}{25}
  4. approximately 0.866025403
  5. \frac{\pi}{3}
  6. a. \cos(315^{\circ})= \frac{\sqrt{2}}{2}, \sin(315^{\circ})= -\frac{\sqrt{2}}{2} b. \cos(-\frac{\pi}{6})= \frac{\sqrt{3}}{2}, \sin(-\frac{\pi}{6})= -\frac{1}{2}
  7. (\frac{1}{2}, -\frac{\sqrt{3}}{2})

7.4 The Other Trigonometric Functions

  1. \sin t= -\frac{\sqrt{2}}{2}, \cos t= \frac{\sqrt{2}}{2}, \tan t= -1, \sec t= \sqrt{2}, \csc t= -\sqrt{2}, \cot t= -1
  2. \sin \frac{\pi}{3}= \frac{\sqrt{3}}{2}, \cos \frac{\pi}{3}= \frac{1}{2}, \tan \frac{\pi}{3}= \sqrt{3}, \sec \frac{\pi}{3}= 2, \csc \frac{\pi}{3}= \frac{2\sqrt{3}}{3}, \cot \frac{\pi}{3}= \frac{\sqrt{3}}{3}
  3. \sin(-\frac{7\pi}{4})= \frac{\sqrt{2}}{2}, \cos(-\frac{7\pi}{4})= \frac{\sqrt{2}}{2}, \tan(-\frac{7\pi}{4})= 1, \sec(-\frac{7\pi}{4})= \sqrt{2}, \csc(-\frac{7\pi}{4})= \sqrt{2}, \cot(-\frac{7\pi}{4})= 1
  4. -\sqrt{3}
  5. -2
  6. \sin t
  7. \cos t= -\frac{8}{17}, \sin t= \frac{15}{17}, \tan t= -\frac{15}{8}, \csc t= \frac{17}{15}, \cot t= -\frac{8}{15}
  8. \sin t= -1, \cos t= 0, \tan t= \text{Undefined}, \sec t= \text{Undefined}, \csc t= -1, \cot t= 0
  9. \sec t= \sqrt{2}, \csc t= \sqrt{2}, \tan t= 1, \cot t= 1
  10. \approx -2.414

7.1 Section Exercises

  1. Graph of a circle with an angle inscribed, showing the initial side, terminal side, and vertex.
    Figure 1 Graph of a circle with an angle inscribed, showing the initial side, terminal side, and vertex.
  2. Whether the angle is positive or negative determines the direction. A positive angle is drawn in the counterclockwise direction, and a negative angle is drawn in the clockwise direction.
  3. Linear speed is a measurement found by calculating distance of an arc compared to time. Angular speed is a measurement found by calculating the angle of an arc compared to time.
  4. Graph of a circle with an angle inscribed.
    Figure 4 Graph of a circle with an angle inscribed.
  5. Graph of a circle with a 135 degree angle inscribed.
    Figure 5 Graph of a circle with a 135 degree angle inscribed.
  6. Graph of a circle with a 2pi/3 radians angle inscribed.
    Figure 6 Graph of a circle with a 2pi/3 radians angle inscribed.
  7. Graph of a circle with 5pi/6 radians angle inscribed.
    Figure 7 Graph of a circle with 5pi/6 radians angle inscribed.
  8. Graph of a circle with a –pi/10 radians angle inscribed.
    Figure 8 Graph of a circle with a –pi/10 radians angle inscribed.
  9. 240^{\circ}
    Graph of a circle showing the equivalence of two angles.
    Figure 9 Graph of a circle showing the equivalence of two angles.
  10. \frac{4\pi}{3}
    Graph of a circle showing the equivalence of two angles.
    Figure 10 Graph of a circle showing the equivalence of two angles.
  11. \frac{2\pi}{3}
    Graph of a circle showing the equivalence of two angles.
    Figure 11 Graph of a circle showing the equivalence of two angles.
  12. \frac{7\pi}{2} \approx 11.00 \text{ in}^2
  13. \frac{81\pi}{20} \approx 12.72 \text{ cm}^2
  14. 20^{\circ}
  15. 60^{\circ}
  16. -75^{\circ}
  17. \frac{\pi}{2} \text{ radians}
  18. -3\pi \text{ radians}
  19. \pi \text{ radians}
  20. \frac{5\pi}{6} \text{ radians}
  21. \frac{5.02\pi}{3} \approx 5.26 \text{ miles}
  22. \frac{25\pi}{9} \approx 8.73 \text{ centimeters}
  23. \frac{21\pi}{10} \approx 6.60 \text{ meters}
  24. 104.7198 \text{ cm}^2
  25. 0.7697 \text{ in}^2
  26. 250^{\circ}
  27. 320^{\circ}
  28. \frac{4\pi}{3}
  29. \frac{8\pi}{9}
  30. 1320 \text{ rad/min}, 210.085 \text{ RPM}
  31. 7 \text{ in/s}, 4.77 \text{ RPM}, 28.65 \text{ deg/s}
  32. 1,809,557.37 \text{ mm/min} = 30.16 \text{ m/s}
  33. 5.76 \text{ miles}
  34. 120^{\circ}
  35. 794 miles per hour
  36. 2,234 miles per hour
  37. 11.5 inches

7.2 Section Exercises

  1. A right triangle with side opposite, adjacent, and hypotenuse labeled.
    Figure 12 A right triangle with side opposite, adjacent, and hypotenuse labeled.
  2. The tangent of an angle is the ratio of the opposite side to the adjacent side.
  3. For example, the sine of an angle is equal to the cosine of its complement; the cosine of an angle is equal to the sine of its complement.
  4. \frac{\pi}{6}
  5. \frac{\pi}{4}
  6. b=\frac{20\sqrt{3}}{3}, c=\frac{40\sqrt{3}}{3}
  7. a=10,000, c=10,000.5
  8. b=\frac{5\sqrt{3}}{3}, c=\frac{10\sqrt{3}}{3}
  9. \frac{5\sqrt{29}}{29}
  10. \frac{5\sqrt{2}}{2}
  11. \frac{\sqrt{29}}{2}
  12. \frac{5\sqrt{41}}{41}
  13. \frac{5}{4}
  14. \frac{\sqrt{41}}{4}
  15. c=14, b=7\sqrt{3}
  16. a=15, b=15
  17. b=9.9970, c=12.2041
  18. a=2.0838, b=11.8177
  19. a=55.9808, c=57.9555
  20. a=46.6790, b=17.9184
  21. a=16.4662, c=16.8341
  22. 188.3159
  23. 200.6737
  24. 498.3471 ft
  25. 1060.09 ft
  26. 27.372 ft
  27. 22.6506 ft
  28. 368.7633 ft

7.3 Section Exercises

  1. The unit circle is a circle of radius 1 centered at the origin.
  2. Coterminal angles are angles that share the same terminal side. A reference angle is the size of the smallest acute angle, t, formed by the terminal side of the angle t and the horizontal axis.
  3. The sine values are equal.
  4. I
  5. IV
  6. \frac{\sqrt{3}}{2}
  7. \frac{1}{2}
  8. \sqrt{2}
  9. 0
  10. -1
  11. \frac{\sqrt{3}}{2}
  12. 60^{\circ}
  13. 80^{\circ}
  14. 45^{\circ}
  15. \frac{\pi}{3}
  16. \frac{\pi}{3}
  17. \frac{\pi}{8}
  18. 60^{\circ}, Quadrant IV, \sin(300^{\circ})= -\frac{\sqrt{3}}{2}, \cos(300^{\circ})= \frac{1}{2}
  19. 45^{\circ}, Quadrant II, \sin(135^{\circ})= \frac{\sqrt{2}}{2}, \cos(135^{\circ})= -\frac{\sqrt{2}}{2}
  20. 60^{\circ}, Quadrant II, \sin(120^{\circ})= \frac{\sqrt{3}}{2}, \cos(120^{\circ})= -\frac{1}{2}
  21. 30^{\circ}, Quadrant II, \sin(150^{\circ})= \frac{1}{2}, \cos(150^{\circ})= -\frac{\sqrt{3}}{2}
  22. \frac{\pi}{6}, Quadrant III, \sin(\frac{7\pi}{6})= -\frac{1}{2}, \cos(\frac{7\pi}{6})= -\frac{\sqrt{3}}{2}
  23. \frac{\pi}{4}, Quadrant II, \sin(\frac{3\pi}{4})= \frac{\sqrt{2}}{2}, \cos(\frac{3\pi}{4})= -\frac{\sqrt{2}}{2}
  24. \frac{\pi}{3}, Quadrant II, \sin(\frac{2\pi}{3})= \frac{\sqrt{3}}{2}, \cos(\frac{2\pi}{3})= -\frac{1}{2}
  25. \frac{\pi}{4}, Quadrant IV, \sin(\frac{7\pi}{4})= -\frac{\sqrt{2}}{2}, \cos(\frac{7\pi}{4})= \frac{\sqrt{2}}{2}
  26. \frac{\sqrt{77}}{9}
  27. -\frac{\sqrt{15}}{4}
  28. (-10, 10\sqrt{3})
  29. (-2.778, 15.757)
  30. [-1, 1]
  31. \sin t= \frac{1}{2}, \cos t= -\frac{\sqrt{3}}{2}
  32. \sin t= -\frac{\sqrt{2}}{2}, \cos t= -\frac{\sqrt{2}}{2}
  33. \sin t= \frac{\sqrt{3}}{2}, \cos t= -\frac{1}{2}
  34. \sin t= -\frac{\sqrt{2}}{2}, \cos t= \frac{\sqrt{2}}{2}
  35. \sin t= 0, \cos t= -1
  36. \sin t= -0.596, \cos t= 0.803
  37. \sin t= \frac{1}{2}, \cos t= \frac{\sqrt{3}}{2}
  38. \sin t= -\frac{1}{2}, \cos t= \frac{\sqrt{3}}{2}
  39. \sin t= 0.761, \cos t= -0.649
  40. \sin t= 1, \cos t= 0
  41. -0.1736
  42. 0.9511
  43. -0.7071
  44. -0.1392
  45. -0.7660
  46. \frac{\sqrt{2}}{4}
  47. -\frac{\sqrt{6}}{4}
  48. \frac{\sqrt{2}}{4}
  49. \frac{\sqrt{2}}{4}
  50. 0
  51. (0, -1)
  52. 37.5 seconds, 97.5 seconds, 157.5 seconds, 217.5 seconds, 277.5 seconds, 337.5 seconds

7.4 Section Exercises

  1. Yes, when the reference angle is \frac{\pi}{4} and the terminal side of the angle is in quadrants I and III. Thus, at x=\frac{\pi}{4}, \frac{5\pi}{4}, the sine and cosine values are equal.
  2. Substitute the sine of the angle in for y in the Pythagorean Theorem x^2 + y^2 = 1. Solve for x and take the negative solution.
  3. The outputs of tangent and cotangent will repeat every \pi units.
  4. \frac{2\sqrt{3}}{3}
  5. \sqrt{3}
  6. \sqrt{2}
  7. 1
  8. 2
  9. \frac{\sqrt{3}}{3}
  10. -\frac{2\sqrt{3}}{3}
  11. \sqrt{3}
  12. -\sqrt{2}
  13. –1
  14. -2
  15. -\frac{\sqrt{3}}{3}
  16. 2
  17. \frac{\sqrt{3}}{3}
  18. –2
  19. –1
  20. \sin t= -\frac{2\sqrt{2}}{3}, \sec t= -3, \csc t= -\frac{3\sqrt{2}}{4}, \tan t= 2\sqrt{2}, \cot t= \frac{\sqrt{2}}{4}
  21. \sec t= 2, \csc t= \frac{2\sqrt{3}}{3}, \tan t= \sqrt{3}, \cot t= \frac{\sqrt{3}}{3}
  22. -\frac{\sqrt{2}}{2}
  23. 3.1
  24. 1.4
  25. \sin t= \frac{\sqrt{2}}{2}, \cos t= \frac{\sqrt{2}}{2}, \tan t= 1, \cot t= 1, \sec t= \sqrt{2}, \csc t= \sqrt{2}
  26. \sin t= -\frac{\sqrt{3}}{2}, \cos t= -\frac{1}{2}, \tan t= \sqrt{3}, \cot t= \frac{\sqrt{3}}{3}, \sec t= -2, \csc t= -\frac{2\sqrt{3}}{3}
  27. –0.228
  28. –2.414
  29. 1.414
  30. 1.540
  31. 1.556
  32. \sin t \approx 0.79
  33. \csc t \approx 1.16
  34. even
  35. even
  36. \frac{\sin t}{\cos t} = \tan t
  37. 13.77 hours, period: 1000\pi
  38. 3.46 inches

Review Exercises

  1. 45^{\circ}
  2. -\frac{7\pi}{6}
  3. 10.385 meters
  4. 60^{\circ}
  5. \frac{2\pi}{11}
  6. This is an image of a graph of a circle with a negative angle inscribed.
    Figure 13 This is an image of a graph of a circle with a negative angle inscribed.
  7. This is an image of a graph of a circle with an angle inscribed.
    Figure 14 This is an image of a graph of a circle with an angle inscribed.
  8. 1036.73 miles per hour
  9. \frac{\sqrt{2}}{2}
  10. \sqrt{3}
  11. 72^{\circ}
  12. a=\frac{10}{3}, c=\frac{2\sqrt{106}}{3}
  13. \frac{6}{\sqrt{11}}
  14. a=\frac{5\sqrt{3}}{2}, b=\frac{5}{2}
  15. 369.2136 ft
  16. \frac{\sqrt{2}}{2}
  17. 60^{\circ}
  18. \frac{\sqrt{3}}{2}
  19. all real numbers
  20. \frac{\sqrt{3}}{2}
  21. \frac{2\sqrt{3}}{3}
  22. 2
  23. –2.5
  24. \frac{1}{3}
  25. cosine, secant

Practice Test

  1. 150^{\circ}
  2. 6.283 centimeters
  3. 15^{\circ}
  4. This is an image of a graph of a circle with an angle inscribed.
    Figure 15 This is an image of a graph of a circle with an angle inscribed.
  5. 3.351 feet per second, \frac{2\pi}{75} radians per second
  6. a=\frac{9}{2}, b=\frac{9\sqrt{3}}{2}
  7. \frac{1}{2}
  8. real numbers
  9. 1
  10. -\sqrt{2}
  11. –0.68
  12. \frac{\pi}{3}

License

Foundations of Mathematics 12 Copyright © by imazur. All Rights Reserved.

Share This Book